Rapid genetic screening for hemochromatosis using automated SSCP-based capillary electrophoresis (SSCP-CE).
نویسندگان
چکیده
Hereditary hemochromatosis (HHC) represents an autosomal recessive disease in which increased iron absorption causes iron overload and irreversible tissue damage. The recently detected association between two point mutations in the HFE gene on chromosome 6p and HHC has made it possible to screen for the disease before the onset of irreversible tissue damage. Conventional genetic testing is based on restriction fragment-length polymorphisms (RFLP) using two endonuclease recognition sites in codon 63 or 282, respectively. In this study, we have adapted single-strand conformation polymorphism analysis for capillary electrophoresis (SSCP-CE) to detect homozygote or heterozygote point mutations. Two HFE gene fragments spanning codons 63 and 282 were amplified by a duplex PCR using genomic DNA from peripheral blood or from tissue sections of paraffin-embedded liver biopsies as template. Thereby, rapid genotyping of both HFE mutations was achieved with a single PCR, omitting the need of further analysis by restriction digest. Eighty-five patients with liver disease and/or suspected iron overload were genotyped using SSCP-CE, and all results were verified by conventional RFLP analysis. In summary, SSCP-CE proved to be a reliable, cost-effective, sensitive and rapid method for genotyping HFE mutations. This method will further facilitate high-throughput genetic screening using capillary array electrophoretic devices.
منابع مشابه
Technical challenges in applying capillary electrophoresis-single strand conformation polymorphism for routine genetic analysis.
Recent and future advances in population genetics will have a significant impact on health care practices and the economics of health care provision only if a spectrum of patient-tailored, effective methods of DNA screening for sequence alterations has been developed. Genetic screening by capillary electrophoresis-single strand conformation polymorphism (CE-SSCP), which is based upon the differ...
متن کاملCharacterization of isolates of Citrus tristeza virus by sequential analyses of enzyme immunoassays and capillary electrophoresis-single-strand conformation polymorphisms.
Citrus tristeza virus (CTV) is the causal agent of tristeza disease, which is one of the most devastating diseases of citrus crops worldwide. This paper describes a method for the rapid detection and genotyping of naturally spreading CTV isolates. This method uses ELISA or dot-blot immunological tests to detect trees infected with CTV. The reaction wells or membrane spots for which there is a p...
متن کاملNested PCR-linked capillary electrophoresis and single-strand conformation polymorphisms for detection of macrolide-resistant Mycoplasma pneumoniae in Beijing, China.
Mycoplasma pneumoniae is usually susceptible to macrolides, but macrolide-resistant strains have been found frequently in recent years. Mutations in domain V of the 23S rRNA gene of M. pneumoniae interfere with the binding of macrolides to rRNA and mediate macrolide resistance. In this study, we developed a rapid and inexpensive method that combines nested PCR (nPCR), single-strand conformation...
متن کاملFluorescent-based single-strand conformation polymorphism/heteroduplex capillary electrophoretic mutation analysis of the P53 gene.
Fluorescent-based single-strand conformation polymorphism (F-SSCP) analysis with capillary electrophoresis (CE) is the most common method for the detection of mutation because of its high sensitivity and resolution. In this study, we prepared an inexpensive linear polyacrylamide (LPA), and successfully applied it to CE-SSCP analysis and tandem CE-SSCP/heteroduplex analysis (HA) of the P53 gene ...
متن کاملMutation Detection by Single Strand Conformation Polymorphism and Heteroduplex Analysis
Single strand conformation polymorphism (SSCP) and heteroduplex analysis (HDA) are two of the most popular electrophoresis-based mutation detection methods. Coupled to DNA amplification of the sequence to be analyzed, these techniques have become the methods of choice for a number of molecular diagnostic laboratories. This can be explained mainly by the numerous advantages, namely their technic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioTechniques
دوره 26 6 شماره
صفحات -
تاریخ انتشار 1999